Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(11): 10589-10597, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37186946

RESUMO

A persistent lack of detailed and quantitative structural analysis of these hierarchical carbon nanotube (CNT) ensembles precludes establishing processing-structure-property relationships that are essential to enhance macroscale performance (e.g., in mechanical, electrical, thermal applications). Here, we use scanning transmission X-ray microscopy (STXM) to analyze the hierarchical, twisted morphology of dry-spun CNT yarns and their composites, quantifying key structural characteristics such as density, porosity, alignment, and polymer loading. As the yarn twist density increases (15,000 to 150,000 turns per meter), the yarn diameter decreased (4.4-1.4 µm) and density increased (0.55-1.26 g·cm-3), as intuitively expected. Yarn density, ρ, ubiquitously scaled with diameter d according to ρ ∼ d-2 for all parameters studied here. Spectromicroscopy probes with 30 nm resolution and elemental specificity were employed to analyze the radial and longitudinal distribution of the oxygen-containing polymer content (∼30% weight fraction), demonstrating nearly perfect filling of the voids between CNTs with a vapor-phase polymer coating and cross-linking process. These quantitative correlations highlight the intimate connections between processing conditions and yarn structure with important implications for translating the nanoscale properties of CNTs to the macroscale.

2.
ACS Nanosci Au ; 3(2): 182-191, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37096228

RESUMO

Current approaches to carbon nanotube (CNT) synthesis are limited in their ability to control the placement of atoms on the surface of nanotubes. Some of this limitation stems from a lack of understanding of the chemical bond-building mechanisms at play in CNT growth. Here, we provide experimental evidence that supports an alkyne polymerization pathway in which short-chained alkynes directly incorporate into the CNT lattice during growth, partially retaining their side groups and influencing CNT morphology. Using acetylene, methyl acetylene, and vinyl acetylene as feedstock gases, unique morphological differences were observed. Interwall spacing, a highly conserved value in natural graphitic materials, varied to accommodate side groups, increasing systematically from acetylene to methyl acetylene to vinyl acetylene. Furthermore, attenuated total reflectance Fourier-transfer infrared spectroscopy (ATR-FTIR) illustrated the existence of intact methyl groups in the multiwalled CNTs derived from methyl acetylene. Finally, the nanoscale alignment of the CNTs grown in vertically aligned forests differed systematically. Methyl acetylene induced the most tortuous growth while CNTs from acetylene and vinyl-acetylene were more aligned, presumably due to the presence of polymerizable unsaturated bonds in the structure. These results demonstrate that feedstock hydrocarbons can alter the atomic-scale structure of CNTs, which in turn can affect properties on larger scales. This information could be leveraged to create more chemically and structurally complex CNT structures, enable more sustainable chemical pathways by avoiding the need for solvents and postreaction modifications, and potentially unlock experimental routes to a host of higher-order carbonaceous nanomaterials.

3.
Nanoscale ; 14(13): 4922-4928, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35302123

RESUMO

Ionic liquids possess compelling properties and vast chemical diversity, promising unprecedented performance and tunability for advanced electrochemical applications in catalysis, sensing, and energy storage. However, with broad tunability comes intractable, multidimensional parameter spaces not easily traversed by empirical approaches, limiting both scientific understanding and technological breakthroughs with these novel materials. In this Communication, we propose an extensible figure of merit that co-optimizes key ionic liquid properties, including electrochemical stability window, viscosity, and molecular ion size with respect to pore sizes of nanoporous electrodes typically utilized in electrochemical technologies. We coupled density functional theory (DFT) with informatics to augment physiochemical property databases to screen for high-performance room-temperature ionic liquid (RTIL) candidate compounds. This co-design framework revealed a number of promising RTILs that are underrepresented in the literature and thus warrant future follow-up investigations.

4.
Adv Sci (Weinh) ; 8(3): 2001802, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33552850

RESUMO

Simulations and experiments have revealed enormous transport rates through carbon nanotube (CNT) channels when a pressure gradient drives fluid flow, but comparatively little attention has been given to concentration-driven transport despite its importance in many fields. Here, membranes are fabricated with a known number of single-walled CNTs as fluid transport pathways to precisely quantify the diffusive flow through CNTs. Contrary to early experimental studies that assumed bulk or hindered diffusion, measurements in this work indicate that the permeability of small ions through single-walled CNT channels is more than an order of magnitude higher than through the bulk. This flow enhancement scales with the ion free energy of transfer from bulk solutions to a nanoconfined, lower-dielectric environment. Reported results suggest that CNT membranes can unlock dialysis processes with unprecedented efficiency.

5.
Adv Sci (Weinh) ; 7(24): 2001670, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344119

RESUMO

Enhanced fluid transport in single-walled carbon nanotubes (SWCNTs) promises to enable major advancements in many membrane applications, from efficient water purification to next-generation protective garments. Practical realization of these advancements is hampered by the challenges of fabricating large-area, defect-free membranes containing a high density of open, small diameter SWCNT pores. Here, large-scale (≈60 cm2) nanocomposite membranes comprising of an ultrahigh density (1.89 × 1012 tubes cm-2) of 1.7 nm SWCNTs as sole transport pathways are demonstrated. Complete opening of all conducting nanotubes in the composite enables unprecedented accuracy in quantifying the enhancement of pressure-driven transport for both gases (>290× Knudsen prediction) and liquids (6100× no-slip Hagen-Poiseuille prediction). Achieved water permeances (>200 L m-2 h-1 bar-1) greatly exceed those of state-of-the-art commercial nano- and ultrafiltration membranes of similar pore size. Fabricated membranes reject nanometer-sized molecules, permit fractionation of dyes from concentrated salt solutions, and exhibit excellent chemical resistance. Altogether, these SWCNT membranes offer new opportunities for energy-efficient nano- and ultrafiltration processes in chemically demanding environments.

6.
J Phys Chem Lett ; 11(15): 6150-6155, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32645262

RESUMO

Ionic liquids (ILs) promise far greater electrochemical performance compared to aqueous systems, yet key physicochemical properties governing their assembly at interfaces within commonly used graphitic nanopores remain poorly understood. In this work, we combine synchrotron X-ray scattering with first-principles molecular dynamics simulations to unravel key structural characteristics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([TFSI]-) ionic liquids confined in carbon slit pores. X-ray scattering reveals selective pore filling due to size exclusion, while filled pores exhibit disruption in the IL intermolecular structure, the extent of which increases for narrower slit pores. First-principles simulations corroborate this finding and quantitatively describe how perturbations in the local IL structure, particularly the hydrogen-bond network, depend strongly on the degree of confinement. Despite significant deviations in structure under confinement, electrochemical stability remains intact, which is important for energy storage based on nanoporous carbon electrodes (e.g., supercapacitors).

7.
J Chem Theory Comput ; 16(4): 2692-2702, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32155064

RESUMO

Understanding emergent phenomena of fluids under physical confinement requires the development of advanced tools for rapid and accurate simulation of their physiochemical properties. Simulating liquid molecules commensurate in size with the nanoscale enclosures that confine them is a key challenge. We demonstrate an accelerated molecular dynamics simulation technique that combines soft-core potentials (SCP) and simulated annealing (SA) to analyze confined liquids. This integrated SCP/SA method relies on a new spliced soft-core potential (SSCP), which enables tunable accuracy with respect to the target hard-core potential (HCP). SCP/SA enables the packing of enclosures with bulk material in a controlled, thermodynamically consistent manner. The enhanced SSCP accuracy is a critical feature of SCP/SA, enabling a smooth transition between the SCP and the HCP at a desired SCP hardness. We applied SCP/SA to the problem of filling a carbon nanotube (CNT) in periodic boundary conditions with a popular ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM+][PF6-]. We performed a series of triplicate simulations on systems with varying CNT diameter and charge to demonstrate SCP/SA's versatility. Beyond this IL/CNT system, the SCP/SA simulation framework has a broad range of potential applications, not limited to nanoscale enclosures and interfaces, including both solid-state and biological systems.

8.
ACS Nano ; 12(12): 11756-11784, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30516055

RESUMO

Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.

9.
Nanoscale ; 9(16): 5222-5233, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28397885

RESUMO

A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O2, and this effect was mitigated by high H2 concentrations and not due to water vapor (as confirmed in O2-free water addition experiments), supporting the importance of O2 specifically. Further characterization of the interface between the Fe catalyst and Al2O3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O2 and H2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.

10.
ACS Nano ; 11(6): 5405-5416, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28414424

RESUMO

Fundamental understanding of structure-property relationships in hierarchically organized nanostructures is crucial for the development of new functionality, yet quantifying structure across multiple length scales is challenging. In this work, we used nondestructive X-ray scattering to quantitatively map the multiscale structure of hierarchically self-organized carbon nanotube (CNT) "forests" across 4 orders of magnitude in length scale, from 2.0 Å to 1.5 µm. Fully resolved structural features include the graphitic honeycomb lattice and interlayer walls (atomic), CNT diameter (nano), as well as the greater CNT ensemble (meso) and large corrugations (micro). Correlating orientational order across hierarchical levels revealed a cascading decrease as we probed finer structural feature sizes with enhanced sensitivity to small-scale disorder. Furthermore, we established qualitative relationships for single-, few-, and multiwall CNT forest characteristics, showing that multiscale orientational order is directly correlated with number density spanning 109-1012 cm-2, yet order is inversely proportional to CNT diameter, number of walls, and atomic defects. Lastly, we captured and quantified ultralow-q meridional scattering features and built a phenomenological model of the large-scale CNT forest morphology, which predicted and confirmed that these features arise due to microscale corrugations along the vertical forest direction. Providing detailed structural information at multiple length scales is important for design and synthesis of CNT materials as well as other hierarchically organized nanostructures.

11.
ACS Nano ; 10(12): 11496-11504, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27959511

RESUMO

The properties of carbon nanotube (CNT) networks and analogous materials comprising filamentary nanostructures are governed by the intrinsic filament properties and their hierarchical organization and interconnection. As a result, direct knowledge of the collective dynamics of CNT synthesis and self-organization is essential to engineering improved CNT materials for applications such as membranes and thermal interfaces. Here, we use real-time environmental transmission electron microscopy (E-TEM) to observe nucleation and self-organization of CNTs into vertically aligned forests. Upon introduction of the carbon source, we observe a large scatter in the onset of nucleation of individual CNTs and the ensuing growth rates. Experiments performed at different temperatures and catalyst particle densities show the critical role of CNT density on the dynamics of self-organization; low-density CNT nucleation results in the CNTs becoming pinned to the substrate and forming random networks, whereas higher density CNT nucleation results in self-organization of the CNTs into bundles that are oriented perpendicular to the substrate. We also find that mechanical coupling between growing CNTs alters their growth trajectory and shape, causing significant deformations, buckling, and defects in the CNT walls. Therefore, it appears that CNT-CNT coupling not only is critical for self-organization but also directly influences CNT quality and likely the resulting properties of the forest. Our findings show that control of the time-distributed kinetics of CNT nucleation and bundle formation are critical to manufacturing well-organized CNT assemblies and that E-TEM can be a powerful tool to investigate the mesoscale dynamics of CNT networks.

12.
Adv Mater ; 28(28): 6020, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27442972

RESUMO

A flexible membrane with sub-5 nm single-walled carbon nanotube (SWNT) pores is developed by F. Fornasiero and co-workers, as described on page 5871, for application as a key component of protective, yet breathable fabrics. The SWNTs are shown to enable exceptionally fast transport of water vapor under a concentration driving force. Thus, membranes having SWNTs as moisture-conductive pores feature outstanding breathability and provide a high degree of protection from biological threats by size exclusion.

13.
Adv Mater ; 28(28): 5871-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27159328

RESUMO

Small-diameter carbon nanotubes (CNTs) are shown to enable exceptionally fast transport of water vapor under a concentration gradient driving force. Thanks to this property, membranes having sub-5 nm CNTs as conductive pores feature outstanding breathability while maintaining a high degree of protection from biothreats by size exclusion.

14.
Adv Mater ; 27(38): 5726-37, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26037895

RESUMO

Owing to their simple chemistry and structure, controllable geometry, and a plethora of unusual yet exciting transport properties, carbon nanotubes (CNTs) have emerged as exceptional channels for fundamental nanofluidic studies, as well as building blocks for future fluidic devices that can outperform current technology in many applications. Leveraging the unique fluidic properties of CNTs in advanced systems requires a full understanding of their physical origin. Recent advancements in nanofabrication technology enable nanofluidic devices to be built with a single, nanometer-wide CNT as a fluidic pathway. These novel platforms with isolated CNT nanochannels offer distinct advantages for establishing quantitative structure-transport correlations in comparison with membranes containing many CNT pores. In addition, they are promising components for single-molecule sensors as well as for building nanotube-based circuits wherein fluidics and electronics can be coupled. With such advanced device architecture, molecular and ionic transport can be manipulated with vastly enhanced control for applications in sensing, separation, detection, and therapeutic delivery. Recent achievements in fabricating isolated-CNT nanofluidic platforms are highlighted, along with the most-significant findings each platform enables for water, ion, and molecular transport. The implications of these findings and remaining open questions on the exceptional fluidic properties of CNTs are also discussed.

15.
Nanoscale ; 6(17): 10106-12, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25034394

RESUMO

Arrays of small-diameter nanoparticles with high spatial order are useful for chemical and biological sensors, data storage, synthesis of nanowires and nanotubes, and many other applications. We show that self-ordered metal nanoparticle arrays can be formed by dewetting of thin films on hexagonal mesh substrates made of anodic aluminum oxide (AAO). Upon heating, the metal (Fe) film dewets onto the interstitial sites (i.e., the node points) between pores on the top surface of the AAO. We investigated the particle morphology and dynamics of dewetting using a combination of atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), and numerical simulations. Templated metal particles are more monodisperse and have higher local order than those formed by the same dewetting process on flat, nonporous alumina. The degree of order depends on the initial film thickness, and for the optimal thickness tested (nominally 2 nm), we achieved uniform coverage and high order of the particles, comparable to that of the AAO template itself. Computational modeling of dewetting on templates with various pore order and size shows that the order of AAO pores is primarily influential in determining particle position and spacing, while the variance in pore size is less impactful. Potential uses of these ordered nanoparticle arrays on porous materials include plasmonic sensors and spatially controlled catalysts.


Assuntos
Alumínio/química , Cristalização/métodos , Ferro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Impressão Molecular/métodos , Simulação por Computador , Teste de Materiais , Modelos Químicos , Modelos Moleculares , Tamanho da Partícula , Porosidade , Molhabilidade
16.
J Neural Eng ; 11(3): 036013, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24810149

RESUMO

OBJECTIVE: Carbon nanotubes (CNTs) are attractive for use in peripheral nerve interfaces because of their unique combination of strength, flexibility, electrical conductivity and nanoscale surface texture. Here we investigated the growth of motor neurons on thin films of horizontally aligned CNTs (HACNTs). APPROACH: We cultured primary embryonic rat motor neurons on HACNTs and performed statistical analysis of the length and orientation of neurites. We next presented motor neurons with substrates of alternating stripes of HACNTs and SiO2. MAIN RESULTS: The neurons survived on HACNT substrates for up to eight days, which was the full duration of our experiments. Statistical analysis of the length and orientation of neurites indicated that the longest neurites on HACNTs tended to align with the CNT direction, although the average neurite length was similar between HACNTs and glass control substrates. We observed that when motor neurons were presented with alternating stripes of HACNTs and SiO2, the proportion of neurons on HACNTs increases over time, suggesting that neurons selectively migrate toward and adhere to the HACNT surface. SIGNIFICANCE: The behavior of motor neurons on CNTs has not been previously investigated, and we show that aligned CNTs could provide a viable interface material to motor neurons. Combined with emerging techniques to build complex hierarchical structures of CNTs, our results suggest that organised CNTs could be incorporated into nerve grafts that use physical and electrical cues to guide regenerating axons.


Assuntos
Eletrodos Implantados , Membranas Artificiais , Impressão Molecular/métodos , Neurônios Motores/citologia , Neurônios Motores/fisiologia , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Animais , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Ratos
17.
ACS Nano ; 7(4): 3565-80, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23464741

RESUMO

While many promising applications have been demonstrated for vertically aligned carbon nanotube (CNT) forests, lack of consistency in results (e.g., CNT quality, height, and density) continues to hinder knowledge transfer and commercialization. For example, it is well known that CNT growth can be influenced by small concentrations of water vapor, carbon deposits on the reactor wall, and experiment-to-experiment variations in pressure within the reaction chamber. However, even when these parameters are controlled during synthesis, we found that variations in ambient lab conditions can overwhelm attempts to perform parametric optimization studies. We established a standard growth procedure, including the chemical vapor deposition (CVD) recipe, while we varied other variables related to the furnace configuration and experimental procedure. Statistical analysis of 280 samples showed that ambient humidity, barometric pressure, and sample position in the CVD furnace contribute significantly to experiment-to-experiment variation. We investigated how these factors lead to CNT growth variation and recommend practices to improve process repeatability. Initial results using this approach reduced run-to-run variation in CNT forest height and density by more than 50%.


Assuntos
Cristalização/métodos , Interpretação Estatística de Dados , Modelos Químicos , Modelos Estatísticos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Simulação por Computador , Substâncias Macromoleculares/química , Teste de Materiais , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
18.
J Mater Chem B ; 1(37): 4711-4718, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32261153

RESUMO

We present the fabrication and mechanical properties of thin collagen networks self-assembled in a suspended configuration over micropost arrays. These collagen "canopies" were formed on arrays of microposts made of PDMS, silicon, and vertically aligned carbon nanotubes (CNT). We reversibly loaded the canopy to an in-plane stress of 32 MPa. We found that human dermal fibroblasts (HDFb) proliferate on the canopy substrates for up to 7 days. This versatile fabrication method for suspended extracellular matrix (ECM) films may enable the development of new assays to probe cell-ECM interactions, along with integration of microelectronic probes.

19.
ACS Nano ; 6(6): 5091-101, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22571676

RESUMO

The production of high-performance carbon nanotube (CNT) materials demands understanding of the growth behavior of individual CNTs as well as collective effects among CNTs. We demonstrate the first use of grazing incidence small-angle X-ray scattering to monitor in real time the synthesis of CNT films by chemical vapor deposition. We use a custom-built cold-wall reactor along with a high-speed pixel array detector resulting in a time resolution of 10 msec. Quantitative models applied to time-resolved X-ray scattering patterns reveal that the Fe catalyst film first rapidly dewets into well-defined hemispherical particles during heating in a reducing atmosphere, and then the particles coarsen slowly upon continued annealing. After introduction of the carbon source, the initial CNT diameter distribution closely matches that of the catalyst particles. However, significant changes in CNT diameter can occur quickly during the subsequent CNT self-organization process. Correlation of time-resolved orientation data to X-ray scattering intensity and height kinetics suggests that the rate of self-organization is driven by both the CNT growth rate and density, and vertical CNT growth begins abruptly when CNT alignment reaches a critical threshold. The dynamics of CNT size evolution and self-organization vary according to the catalyst annealing conditions and substrate temperature. Knowledge of these intrinsically rapid processes is vital to improve control of CNT structure and to enable efficient manufacturing of high-density arrays of long, straight CNTs.


Assuntos
Membranas Artificiais , Nanopartículas/química , Nanopartículas/ultraestrutura , Cristalização/métodos , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanopartículas/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície/efeitos da radiação , Raios X
20.
ACS Nano ; 5(11): 8974-89, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22023221

RESUMO

Understanding the population growth behavior of filamentary nanostructures, such as carbon nanotubes (CNTs), is hampered by the lack of characterization techniques capable of probing statistical variations with high spatial resolution. We present a comprehensive methodology for studying the population growth dynamics of vertically aligned CNT forests, utilizing high-resolution spatial mapping of synchrotron X-ray scattering and attenuation, along with real-time height kinetics. We map the CNT alignment and dimensions within CNT forests, revealing broadening and focusing of size distributions during different stages of the process. Then, we calculate the number density and mass density of the CNT population versus time, which are true measures of the reaction kinetics. We find that the mass-based kinetics of a CNT population is accurately represented by the S-shaped Gompertz model of population growth, although the forest height and CNT length kinetics are essentially linear. Competition between catalyst activation and deactivation govern the rapid initial acceleration and slow decay of the CNT number density. The maximum CNT density (i.e., the overall catalyst activity) is limited by gas-phase reactions and catalyst-surface interactions, which collectively exhibit autocatalytic behavior. Thus, we propose a comprehensive picture of CNT population growth which combines both chemical and mechanical cooperation. Our findings are relevant to both bulk and substrate-based CNT synthesis methods and provide general insights into the self-assembly and collective growth of filamentary nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...